<<Interface>> TransfiniteSet {Analysis}

Documentation
Transfinite set is the implementation of a mathematical set. Normally, sets in software implementation are finite, but in mathematics they are often infinite. Since most of the behavior of wither type of set can be defined by the same operations protocols, we list them here.
In Implementations, infinite sets (instances of TransfiniteSet, but not of set) are most often defined by the Boolean operation "includes" which test for the inclusion of a particular "T."


Parent PackageCollectionsAbstractYes
Export ControlPublicAccessLink Class forNone
Class KindParameterizedClassCardinalityn
Space ConcurrencySequential
PersistenceYes  


Operations
NameSignatureClass
includesBoolean includes (T element)TransfiniteSet
includesAllBoolean includesAll (TransfiniteSet set)TransfiniteSet
subSetBoolean subSet (TransfiniteSet set)TransfiniteSet
intersectsBoolean intersects (TransfiniteSet set)TransfiniteSet
equalsBoolean equals (TransfiniteSet set)TransfiniteSet
unionTransfiniteSet<T> union (TransfiniteSet set)TransfiniteSet
intersectionTransfiniteSet<T> intersection (TransfiniteSet set)TransfiniteSet
symmetricDifferenceTransfiniteSet<T> symmetricDifference (TransfiniteSet<T> set)TransfiniteSet
differenceTransfiniteSet<T> difference (TransfiniteSet set)TransfiniteSet
isEmptyBoolean isEmpty ()TransfiniteSet
notEmptyBoolean notEmpty ()TransfiniteSet
containsBoolean contains (TransfiniteSet<T> set)TransfiniteSet
containsBoolean contains (T element)TransfiniteSet